
Eur. Phys. J. B 40, 371–377 (2004)
DOI: 10.1140/epjb/e2004-00265-y THE EUROPEAN

PHYSICAL JOURNAL B

First principles simulations of the magnetic and structural
properties of Iron
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Abstract. We have implemented non-collinear GGA and a generalized Bloch’s theorem to simulate un-
conmensurate spiral arrangements of spins in a Density Functional Theory code based on localized wave
functions. We have subsequently performed a thorough study of the different states of bulk Iron. We de-
termine the minimal basis set required to obtain reliable orderings of ground and excited states. We find
that the most stable fcc phase is a spiral with an equilibrium lattice constant 3.56 Å.

PACS. 71.15.Ap Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods,
ASA, linearized methods, etc.) – 71.15.Mb Density functional theory, local density approximation, gradient
and other corrections – 75.50.Bb Fe and its alloys

1 Introduction

Advances in experimental setups along the past two
decades have allowed to grow in a controlled way, and
characterize, tiny structures and devices, paving the way
for the slow development of those fields of Materials Sci-
ence now covered under the umbrella of Nanoscience. Ever
more powerful computers and canny algorithms have also
allowed to simulate larger and larger clusters of atoms or
molecules, filling partially the bridge between theory and
experiments.

Molecular Dynamics packages based on Density Func-
tional Theory (DFT) [1] represent a specially useful set
of theoretical tools in the analysis of such materials and
devices. Among them, those which use basis sets (BS) of
localized wave functions are particularly attractive since,
one the one hand, can be easily adapted to work with
order-N algorithms, and on the other, they can be writ-
ten in a tight-binding language, which allows for easier
analytical approaches.

SIESTA is a simulation package which literally im-
plements the tight-binding philosophy [2]. Indeed, it uses
Norm-Conserving pseudopotentials [3] to integrate away
core energy levels and very flexible BS made up of numeri-
cal atomic-like wave-functions to handle valence electrons.
The use of minimal bases allow for fast calculations which
already provide a qualitative understanding of the sim-
ulated material. Accurate calculations can be performed
at a higher numerical cost, using more complete BS. As-
sessment of the degree of reliability of a BS might be es-
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sential, since competing would-be ground states may in
some instances have small energy differences. Such anal-
yses have already been performed for selected molecules
and solids [4,5], but not for magnetic materials. Those
studies show how both the number of wave functions used
as well as their extent are variational parameters, provid-
ing therefore a path for systematic improvements of the
accuracy of a simulation. A similar study for magnetic ele-
ments or materials seems to be highly desirable, since they
have their own peculiarities and, in particular, are usually
tougher to simulate. We have performed an exhaustive
study of the degree of accuracy of the basis for Iron in
most of its bulk phases as well as for small clusters. We
find that SIESTA provides a highly accurate description
of the systems we have scrutinized, provided that a large
numbers of extended orbitals is used. We will show below
how BS regarded as fairly complete for simpler elements
can provide disastrous results for this transition metal.

The SIESTA package has built into it the possibility
to cope with non-collinear commensurate spin structures
but only in the Local Density Approximation (LDA). We
have therefore coded the ability to compute non-collinear
arrangements of the spin moments in the Generalized Gra-
dient Approximation (GGA), since LDA fails to provide
adequate ground states and lattice constants of a number
of magnetic transition metals. Moreover, we have included
the possibility to simulate non commensurate spiral struc-
tures [8,9].

While bcc (α−)Iron is firmly established to be a ferro-
magnet, the scenario for fcc (γ−)Iron is more complex,
since it stands at a crossing point between high spin
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ferromagnetic and antiferromagnetic states, and the ac-
tual realization depends sensitively on its actual atomic
volume and, possibly, strains [10]. Tsunoda discovered
a decade ago that γ−Iron could be stabilized as pel-
lets of radii up to 100 nm, with a lattice constant
of 3.577 Å [11,12]. He also found that the magnetic
structure of the pellets was helicoidal, with pitch vec-
tor qexp = (0.12, 0, 1). A number of authors have sub-
sequently looked for theoretical low-energy collinear and
non-collinear states appearing in such γ−phase [6,13–20].

Knöpfle and co-workers [6], who used GGA or LDA
and a full-potential implementation of Density Functional
Theory found that the ground state was indeed a spiral
with the correct pitch vector. But since the Augmented
Spherical Wave (ASW) method tends to overestimate the
atomic volume, it is difficult to extract what their equilib-
rium lattice constant a0 might be.

We have found a spiral ground state with a0 of 3.56 Å,
in excellent agreement with the experimental data of
Tsunoda. We find two local minima when we plot the
energy of the spiral state as a function of the pitch vector,
at q1 = (0, 0, 0.6) and q2 = (0.12, 0, 1), as other authors
did [17]. We label these two states as S1 and S2. The
state S1 is the global minimum for lattice constants down
to 3.47 Å, and only below it is S2 the ground state.

We believe that our results represent a significant
methodological advance for the simulations of magnetic
systems using the SIESTA package since, on the one hand,
we lay down a firm ground for the reliability of atomic
bases of different sizes and, on the other, we allow for the
description of interesting non-collinear and spiral struc-
tures of the spin.

The layout of this article is simple. Section 2 provides
the theoretical backbone of the article; Subsection 2.1 is
a brief reminder of the non-collinear formalism as is ap-
plied to DFT; we present subsequently details of our im-
plementation of non-collinearity and non commensurate
spiral arrangements of spin for such structures. Section 3
is devoted to show and discuss our results for the stability
of the different states of Iron, both within LDA and GGA,
using different BS, up to an optimal choice. We finish the
article with a short summary.

2 Theoretical backbone

We devote this section to provide details of our implemen-
tation of non-collinear GGA and of unconmensurate spiral
arrangements. We believe it is useful to supply first a back-
bone of non-collinear DFT [7,8], which will help us discuss
similarities and differences with the latest approaches [6].

2.1 Brief presentation of non-collinearity in DFT

1. In a non-collinear material, the direction of the mag-
netization vector m(r) = m ·um changes at each place
in the sample, according to the angles θ, φ,

um = ( sin(θ) cos(φ), sin(θ) sin(φ), cos(θ) ). (1)

2. The density matrix can be decomposed in terms of the
electronic density n(r) and m(r) as

ñ(r) =
1
2

(n(r) + m(r) · τ̃ ) (2)

where τ̃ denote the three Pauli matrices. There is a
single rotation matrix, Ũ(θ(r), φ(r)) = eiτ̃yθ/2 eiτ̃zφ/2

which brings ñ(r) to collinear form
(
n11 n12

n21 n22

)
= Û †

(
n↑ 0
0 n↓

)
Û . (3)

3. The Total Energy is a functional of the density matrix,
E[ñ(r)] = T [ñ(r)]+EH [ñ(r)]+Exc[ñ(r)] which, upon
variation provides with the effective single-particle
Hamiltonian

H̃DFT =
(
− �

2

2m
∇2 + vH [ñ(r)]

)
Ĩ + vxc[ñ(r)]. (4)

T and EH are the kinetic and Hartree energy function-
als, while

Exc =
∫
drfxc(n,m,um,∇n,∇m,∇um) (5)

takes account of exchange and correlation. vH and vxc,
in equation (4), are the corresponding potentials.

4. The spinor eigenfunctions of H̃, ψ̃i(r) can be used to
compute the density matrix, since ñ(r) =

∑
i ψ̃i ψ̃

†
i

Each eigenfunction can individually be rotated to
bring it back to collinear form

ψ̃ir) =
(
ψ1(r)
ψ2(r)

)
= Ũi(r)

(
φ(r)

0

)
. (6)

5. The exchange and correlation potential matrix, which
is obtained by functional differentiation of the ex-
change and correlation energy, can be uniquely decom-
posed in terms of Pauli matrices,

ṽxc =
δExc

δñ(r)
= vs Ĩ + vv · τ̃ (7)

where vs = tr(ṽxcĨ)/2 and vv = tr(ṽxcτ̃ )/2.
6. In LDA approximation, vv is a function of only one

vector, um so that it must be proportional to it. It is
then easily shown that ṽxc is diagonalized by the same
rotation matrix as ñ,

ṽxc = Ũ † ṽcoll
xc Ũ = Ũ †

(
v↑ 0
0 v↓

)
Ũ (8)

where vσ = vσ [nσ]. This can be interpreted physically
as rotating the whole system into a collinear reference
frame, where vσ(r) can be computed as in conven-
tional LDA.

7. The GGA expression for the exchange and cor-
relation energy contains also the vector ∇2um.
Therefore the GGA potential includes both
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spin stiffness and antisymmetric exchange terms
(Dzyaloshinskii-Moriya [21,22])

vxc = vsĨ+(vmum+vgrad∇2um+vcrossum×∇2um)τ̃ .
(9)

This implies that v̂xc can not be fully diagonalized by
the Û rotation matrices,

Ũ v̂xcŨ
† = ṽcoll

xc

+ Ũ(vgrad∇2um + vcrossum ×∇2um)τ̃ Ũ †. (10)

An accurate description of non-collinearity must in-
clude a spin stiffness term [19], as is the case for
classical localized spins. For instance, the Heisenberg
Hamiltonian is

E ∼ ρm2

∫
dr(∇um(r))2, (11)

where ρ is the spin stiffness.
Our recipe to partly take account of gradient correc-

tions is to neglect the stiffness contribution and evaluate
only ṽcoll

xc . We rotate the density matrix to bring it into
collinear form, ñcoll. We then compute its gradients ∇ñcoll

in this collinear reference frame, and the collinear poten-
tial, ṽcoll. We finally rotate back. Knöpfle and coworkers
chose an apparently different approach [6]. They rotated
both ñ(r) and its gradient, ∇ñ(r), and then evaluated vxc

with the diagonal terms of both matrices, discarding the
non-diagonal terms of ∇ñ(r). But since

Ũ∇ñŨ † = ∇ñcoll + Ũ(∇Ũ †)ñcoll + ñcoll(∇Ũ )Ũ † (12)

= ∇ñcoll + A · τ̃ (13)

where A = (ax, ay, 0), both approaches are analytically
equivalent. Kleinman and Bylander [23,20] added a spin
stiffness term to their LDA exchange and correlation po-
tential from which they obtained a spiral ground state
with q = (1, 0, 0) at the atomic volume of bulk copper.

The effective LDA Hamiltonian does not commute
with the Pauli matrices τ̃x,y unless the system be para-
magnetic or collinear (θ be equal to 0◦). Therefore the ex-
pectation values of Sx,y are not conserved in the iterative
selfconsistency process of DFT. States with θ = 90◦ can
be shown to be metastable, and therefore θ is conserved
in this case.

2.2 Description of Non-collinear commensurate
and spiral states for a localized BS

A convenient variational wave function for either
molecules (or solids) with non-collinear (commensurate)
magnetic moments is

ψ̃α(r) =
∑

i

φi(r − Ri)
(
cα,i,1

cα,i,2

)
. (14)

For solids, the above wave function can be easily
rewritten so that it explicitly satisfies Block theorem.

For helicoidal arrangement of spins of pitch vector q, the
DFT Hamiltonian commutes with the operator T (R, q) =
Ũ(0, q·R)T (R), which translates by a lattice vector R and
then rotates about the z-axis. Since a wave function of the
kind

ψ̃q
k(r) =

∑
R,i

e−ik(R+di) φi(r − R − di)

× Ũ †(θ0, q · R)
(
ck,i,1

ck,i,2

)
(15)

is an eigenfunction of T (R, q), a generalized Bloch theo-
rem holds [8]. It must be stressed that such wave function
is not an eigenstate of HDFT since, as noted above, a ro-
tation by a constant angle θ0 about the y-axis, Ũ(θ0, 0),
does not commute with the Hamiltonian, unless θ0 = 0.
We have checked numerically that for any wave-function
of the form above, the angle θ0 is indeed not conserved
by the application of HDFT , unless θ = 90◦, which cor-
responds to a metastable situation. Such wave function
must therefore be regarded as purely variational.

3 Results

3.1 Preliminaries: choice of pseudopotential
and integration grids

SIESTA uses norm-conserving pseudopotentials
(NCPS) [3] optimized so that their local part be
smooth [2]. Izquierdo and coworkers [24] proposed to
generate the NCPS for Iron from the atomic configuration
[Ar]3d74s1, with core radii for 4s, 4p, 3d and 4f orbitals
set equal to 2.00 a.u. They found that the optimal radius
for partial-core corrections was 0.7 a.u. We have looked
carefully for a pseudopotential which could produce
a better fit to bulk bcc Iron. Our first criterium to
determine the cutoff radii was to compare the eigenvalues
of the valence shells of atomic Iron obtained from the
NCPS and the all-electrons Hamiltonians and try to
minimize their differences. We found that the radii
obtained using such procedure were very different from
each other. Moreover, they produced fits to the bulk bcc
phase of poor quality as compared with the proposal of
Izquierdo et al. Inclusion of the partial-core 3p levels
into the valence did not help, mostly due to the fact
that 3s electrons are still taken as part of the core and
therefore there remains a strong overlap between valence
and pseudo-core charge.

SIESTA performs Brillouin zone integrations on a grid
of Monkhorst-Pack special points typically extended to
cover half of it [2,25]. The integrand is also smeared by
a Fermi function. Hamiltonian matrix elements are partly
computed on a real space grid, whose fineness ∆x is con-
trolled by a grid cutoff, Ec ≈ (π/∆x)2/2.

Since the energy of the different states need not shift
rigidly when increasing accuracy and moreover competing
ground states for (fcc) Iron have energy differences as tiny
as 5 meV, we decided to set the number of k points, the
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Fig. 1. Total Free Energy as a function of (a) number
of k points in half the Brillouin zone (with a Grid cutoff
of 400 Ry) and (b) Grid cutoff (with 4.000 k points in half
the Brillouin zone). An optimized Double-Zeta (DZ) basis was
used.
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Fig. 2. Energy difference (a) and number of iterations (b)
as a function of the electronic temperature. The calculation
was performed with 4.000 k points, a grid cutoff of 400 Ry
(27.000 points) and an optimized DZ basis.

electronic temperature and the grid cutoff to match an
accuracy of about 1 meV. Figures 1 and 2 show typical
results for the convergence of the energy of bcc ferromag-
netic Iron as a function of those parameters. All the calcu-
lations shown there were performed using the GGA func-
tional as parametrized by Perdew and coworkers [26] and
optimized either Double-Zeta or Triple-Zeta bases (see be-
low). We find then that we need 4.000 k points and up to
700 Ry (which corresponds to 50.000 points in the real
space grid) to meet the desired accuracy. Figure 2 shows
that increasing the temperature to an optimal value of
about 200 or 300 K speeds the convergence of the selfcon-
sistent process significantly while not damaging the accu-
racy required for the energy.
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Fig. 3. (a) Evolution of the Free Energy of the three most
stable states of Iron as a function of the size of the BS. AF = an-
tiferromagnetic, HS = high-spin, FM = ferromagnetic. (b) Co-
hesive energy curves of those same three states, for the two
minima found using the BSD. The discontinuous curves corre-
spond to radii of 6 a.u. and the continuous to 10 a.u. The cal-
culations have been performed using the GGA approximation.

3.2 Optimization of the atomic basis and Phase
diagram for bulk Iron

SIESTA allows for a great flexibility in the use of BS of
wave functions which describe valence electrons. For each
species of atom, one may specify one shell of s, p, d and
f orbitals. Within each shell, one may choose how many
wave functions having the required angular symmetry are
needed. A Single-Zeta basis (SZ) is equivalent to choosing
just one. Completion of the basis leads to Double-Zeta
and Triple-Zeta bases (DZ, TZ). In addition, one may
polarize an orbital (P), which means adding wave func-
tions which correspond to one higher angular momentum
unit [2]. The minimum basis required to accommodate
the eight valence electrons of Iron would be SZ for both
s and d orbitals, which provides a total of 6 wave func-
tions per spin. SIESTA is set up to the default maximum
BS TZTP, which corresponds to 72 wave functions (WF)
per spin. Using more wave is equivalent to filling up the
Hilbert space and provides a better variational estimate of
the ground state. Junquera and coworkers [4] pointed out
that the confinement radius of each orbital are also varia-
tional parameters. Very fast calculations or simulations of
a large number of atoms may therefore be performed by
the use of a Single-Zeta basis of rather confined orbitals.
Such calculations usually provide much of the features of
a material or device. But they are usually regarded are
pretty inaccurate, and DZ bases with polarized s orbitals
are rather used.

We have minimized a few BS ranging from SZ-SZ-SZ
(9 WF) to TZTP-TZTP-TZTP (72 WF). Figure 3a shows
how the convergence of the energy for the three most sta-
ble states of bulk Iron, e.g.: bcc ferromagnetic, fcc ferro-
magnetic high spin and fcc antiferromagnetic as a function
of the number of orbitals used in the BS. We find that a
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Fig. 4. Free energy and magnetic moment of the ground and
lowest excited states of bulk Iron as predicted by LDA ap-
proximation, using (a) BSD and (b) BST, as a function of the
atomic volume.

TZ-TZ-TZ BS (27 WF) is essentially converged for p, d
and f orbitals, since the Free Energy of the three states
changes only a little if we polarize this BS. While we have
not checked explicitly that a fourth Zeta for the s-orbital
may still change somewhat the energy, a inspection of the
curve induces us to believe that our results are completely
converged. It is also apparent that the states do not shift
rigidly upon improving the accuracy. We shall see below
that such an effect is specially damaging in the LDA ap-
proximation.

We have paid special attention to the minimization of
the BS DZP-SZ-DZ (BSD) and TZ-TZ-TZ (BST), where
we have used a grid software program to look for local
minima of the energy as a function of the radii of the
first Zeta of s, p and d orbitals. We find a first local min-
imum for somewhat confined radii of about 6 a.u. and
a deeper one for radii of about 10 a.u. We found that
the energy still decreased upon looking further away, but
thought it worthless to attempt to look for such next min-
imum. Figure 3b shows that extended radii improve both
the energy and the lattice constant substantially. For in-
stance, the lattice constant of the bcc ferromagnetic state
obtained using BSD in GGA approximation, as predicted
by the first minimum is 2.90 Å, while the second one gives
a0 = 2.88 Å.

We find that DZP BS predict erroneous orderings of
the ground and first excited states. Such effect is par-
ticularly apparent in the LDA approximation. Figure 4a
shows that BSD erroneously predicts that the LDA ferro-
magnetic bcc state is more stable that the paramagnetic
fcc one. Figure 4b shows that usage of more complete BS
correct such a mistake. Under such proviso, SIESTA pro-
vides pretty accurate results for the LDA predictions of
the different physical magnitudes. For instance, the lat-
tice constant, magnetic moment and bulk modulus of fer-
romagnetic bcc Iron are found to be 2.76 Å, 2.08µB and
2.68 Mbar, which compare extremely well with the best

all-electrons Plane-wave calculations [27]. Moreover, the
lattice constant for paramagnetic fcc, 3.38 Å, is also very
similar to all-electrons estimate of 3.375 Å, while the en-
ergy difference between both states is somewhat underes-
timated (55 versus about 70-80 meV). [27].

DZP Basis sets also provide awkward results in the
GGA approximation, even though the relative stability
of the lowest energy states is correct now, see Figure 6.
Nevertheless, we find that the shape of the energy curves
of the fcc states change significantly when we increase
the size of the basis from BSD to BST. Now, since the
spiral state smoothly interpolates between the ferromag-
netic HS and the antiferromagnetic ones, we have in-
creased further the size of the BS. We have included more
polarization orbitals of p, d and f symmetry, and have
found that the energy of the three curves is essentially
converged (see Fig. 3). We find equilibrium lattice con-
stant, magnetic moment and bulk modulus of 2.85 Å,
2.31µB and 1.83 Mbar for the ground state, which com-
pare reasonably well with former all-electrons or ultrasoft-
pseudopotentials-based plane waves calculations [14,6].
We have computed the properties of the spiral state for
lattice constants well below 3.54 Å, so that the bind-
ing energy curve is a clear parabola, with a minimum at
a = 3.56 Å, very close to the experimental value (2.577 Å).

We have also simulated clusters with a number of
atoms ranging from 2 to 5, using a BST and non collinear
GGA, as shown in Table 1. Our calculations compare very
well with previous theoretical simulations [24,28–31] and
even improve them when comparisons are made with the
experimental values found for the Fe2 cluster [32].

3.3 Spiral states in the γ phase

We turn now to the predictions for the spiral state in LDA.
We scan the energy as function of pitch vector along the
ΓX and XW directions, where we find the two minima
q1 and q2 we talked about in the introduction. On closer
inspection of Figure 5, we see that the energy curves for
lattice constants equal or larger than 3.58 Å only have
the q1 minimum. The second minimum appears when we
decrease a at or below 3.54 Å, becoming lowest in energy
at a ≈ 3.50 Å. The curves corresponding to smallest lattice
constants are very shallow. Their two minima have almost
the same energy up to 1 meV, and are separated by energy
barriers as small as 4 meV. If LDA were accurate enough
for Iron, one would expect both phases not only to coexist
but also to change dynamically from one to the other.

We finally discuss our results for the spiral structures
in GGA, where we find that the S2 state has already
clearly developed when a = 3.52 Å, but that the ground
state is S1 down to lattice constants of 3.47 Å. It can
be seen again that the energy curves change rather much
when we increase the size of the basis. One of the rea-
sons is that the shape of the binding energy parabola also
changes significantly (see Fig. 6). But for BST, the ferro-
magnetic state has always considerably higher energy and
there is a clearer asymmetric double-well structure with
activation barriers of about 5–7 meV.
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Marsman and Hafner have also performed simulations
of γ-Iron under tetrahedric, orthorhombic and monoclinic
distortions. However they obtained for the undistorted
case a spiral state S2 with equilibrium lattice constant
a = 3.49 Å, much smaller than the experimental one. They
also found that the equilibrium lattice constant for S1 was
a = 3.51 Å. On the contrary, we obtain a state S1 with
a = 3.56 Å, much closer to experiments.
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Fig. 7. (a) Free energy and (b) magnetic moment as a function
of pitch vector q of the spiral state for different lattice constants
ranging from 3.48 Å to 3.61 Å.

Table 1. Bond lengths a (Å), binding energy per atom
Eb (eV/atom) and total magnetic moment M (µB) for Iron
clusters up to 5 atoms calculated with a Triple-Zeta basis
and GGA.

a (Å) B (eV/Å) M (µB)

Fe2 2.02 1.51 6.00
Fe3 D∞h 2.28 1.72 5.62
Fe3 C3v 2.27 1.88 10.00
Fe4 C4v 2.30 2.21 14.00
Fe4 Td 1,2↔3,4 2.27 2.31 14.00

1↔2, 3↔4 2.65
Fe5 D3h 1↔2,3 2↔3 2.43 2.58 17.07

1,2,3↔4,5 2.37

4 Summary

We have performed a thorough study of the different Iron
phases in order to provide a good basis for future calcu-
lations. We have paid special attention to the minimiza-
tion of the different parameters used in the LCAO-DFT
SIESTA code. We found that a grid cutoff of 700 Ry,
4.000 k points and temperature smaller than 300 K are
needed to meet an accuracy of about 1 meV.

We showed that a double-zeta basis is not accurate
enough to supply the correct ground state ordering of the
Iron phases, since for LDA it predicts that the bcc phase is
more stable than the fcc, which is contrary to all previous
calculations. However, when we use a triple-zeta basis the
results change dramatically for both LDA and GGA. We
obtain for the ferromagnetic bcc and equilibrium lattice
constant of 2.85 Å, a magnetic moment of 2.31 µB and a
bulk modulus of 1.83 Mbar, in excellent agreement with
experiments. We have also simulated Iron clusters and we
found a better estimate of the properties of these materials
than previous works.

Finally, we have also made a profound study of the
γ phase and we found an equilibrium lattice constant of
about 3.56 Å, closer to the experimental value of 3.577 Å,
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but with a spiral state S1 instead of the experimental S2.
However these simulations agree with previous works and
even improve them.
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